上海云序生物科技有限公司

https://cloud-seq.biomart.cn

公众号

扫一扫
进入手机商铺

公众号

微信扫一扫
关注公众号

产品分类
公司荣誉
公司图片
联系方式
 公司地址
上海市松江区莘砖公路518号18号楼2楼
邮编:201600
 联系电话
021-****8766登录查看商家电话
 传真号码
 电子邮箱
liuqingqing@****d-seq.com.cn登录查看商家邮箱
 公司网址
http://www.cloud-seq.com.cn
公司新闻

1区,IF=27|借力m6A甲基化修饰,探索肾细胞癌耐药性机制研究

发布时间:2022-05-30 11:29 |  点击次数:

舒尼替尼耐药性可分为原发性和继发性耐药性。虽然过往研究表明了导致舒尼替尼耐药性的几个潜在因素,但其在肾细胞癌(RCC)中的确切机制尚不清楚。2022年5月10日,浙江大学的研究者们在Molecular Cancer杂志上发表了文章“N6-methyladenosine-modifed TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma”。本文发现在RCC中,TRAF1的过表达通过一种METTL14依赖性方式,调节凋亡和血管生成途径,从而促进舒尼替尼耐药性,而靶向TRAF1可能是舒尼替尼治疗患者的一种新型药物干预方式。本文当中涉及到的m6A MeRIP-seqRNA-seq比色法检测整体RNA修饰水平m6A RNA修饰相关酶PCR芯片MeRIP-qPCRRIP-qPCR等,云序生物均可提供技术服务。

近期云序活动,详情点击
   云序7周年测序免费送&发文送好礼

庆云序MeRIP-seq文章超70篇,MeRIP-seq满五送 一 (cloud-seq.com.cn)

标题.png
发表期刊:Molecular Cancer
影响因子:27.401
发表时间:2022年5月10日
研究方法m6A MeRIP-seqRNA-seq比色法检测整体RNA修饰水平m6A RNA饰相关酶PCR芯片MeRIP-qPCRRIP-qPCR双荧光素酶实验
文章链接N6-methyladenosine-modified TRAF1 promotes sunitinib resistance by regulating apoptosis and angiogenesis in a METTL14-dependent manner in renal cell carcinoma

 

技术路线

技术路线.png
研究内容
01  建立耐舒尼替尼的RCC细胞系和细胞衍生的异种移植模型
为了表征在体外和体内RCC中的RCC舒尼替尼耐药性,研究者们通过长期暴露于增加浓度的舒尼替尼,建立了两个RCC耐舒尼替尼的RCC细胞系(78R和OSR),并通过舒尼替尼口服治疗建立了耐药细胞源性异种移植物(CDX-R)模型(图1.A)。与相应的亲本细胞(78S和OSS)相比,78R和OSR细胞对舒尼替尼表现出较差的反应,如IC50增加,集落形成能力增加,舒尼替尼治疗下细胞凋亡减少和血管生成增加(图1.B-F)。为了建立细胞来源的异种移植模型,作者将786-O细胞植入裸鼠体内,并在体内三次传代期间用舒尼替尼治疗小鼠。为了验证传代3异种移植物(CDX-R)的耐药性,作者将CDX-R和CDX-S肿瘤植入裸鼠体内。结果表明,CDX-R肿瘤对舒尼替尼治疗的敏感性低于CDX-S肿瘤,如KI67,CD31和CD10水平升高所表明的那样(图1.G-J)。
图1. 舒尼替尼耐药模型的建立和验证
图1. 舒尼替尼耐药模型的建立和验证

02  TRAF1 在耐舒尼替尼 RCC 中的表达水平升高
使用树对细胞和CDX样品进行RNA-seq分析,以研究与RCC中舒尼替尼耐药性相关的的关键基因(图2.A)。共鉴定了196个不同表达的基因,基因本体(GO)富集分析表明,血管生成和凋亡途径可能对舒尼替尼耐药性有影响(图2.B-C)。在舒尼替尼抗性细胞和CDX-R模型中,TRAF1的表达在RNA和蛋白质水平上均显着上调(图2.D-G)。通过对CDX样品进行IHC染色也观察到相同的结果(图2.H-I)。与这些发现一致,在对舒尼替尼反应较差的临床患者中,TRAF1阳性细胞的频率更高,染色强度更强(图2.J-K)。重要的是,TRAF1表达较高的患者表现出较差的总生存期(图2.L)。以上这些数据表明,TRAF1对舒尼替尼耐药性具有潜在重要性。
图2. 舒尼替尼耐药RCC中TRAF1表达水平升高
图2. 舒尼替尼耐药RCC中TRAF1表达水平升高

03  TRAF1对于促进舒尼替尼耐药性至关重要
 在TRAF1敲降的RCC舒尼替尼耐药细胞系中,舒尼替尼耐药性显著降低,而在TRAF1过表达细胞中,耐药性增加(图3.A-B)。同时,在菌落形成(图3.C-D)和EdU测定(图3.E-F)中观察到类似的结果,表明TRAF1在RCC的舒尼替尼耐药性中起关键作用。此外,流式细胞术分析进一步显示,TRAF1敲降时,舒尼替尼耐药细胞凋亡增加(图3.G),而TRAF1过表达时,舒尼替尼敏感细胞凋亡减少(图3.H)。
图3. TRAF1在舒尼替尼耐药性中起关键作用
图3. TRAF1在舒尼替尼耐药性中起关键作用

此外,管形成测定的结果表明,TRAF1过表达显着增强了血管生成(图4.A-B),并且TRAF1表达的减少抑制了血管生成(图4.C-D)。我们发现TRAF1的相对RNA表达水平与TCGA数据库中几个下游基因(mTOR,VEGFA,RELA和PARP)的表达水平之间存在正相关关系,表明TRAF1与这些基因之间存在潜在关联(图4.E)。然后使用Western Blot分析进一步研究参与舒尼替尼耐药性的特定下游蛋白质,显示TRAF1过表达显著激活AKT/mTOR/HIF1a/VEGFA途径(图4.F-G)。上述结果表明,TRAF1对于维持舒尼替尼耐药性至关重要,沉默TRAF1可通过抑制血管生成和诱导肿瘤细胞凋亡来增加舒尼替尼的效率。
图4. TRAF1在舒尼替尼耐药性中起关键作用
图4. TRAF1在舒尼替尼耐药性中起关键作用

04  TRAF1受m6A RNA甲基化调节
先前的研究表明,m6A是RNA中最丰富的碱基修饰,可以调节各种癌症中基因的表达。作者假设TRAF1的上调表达可能通过m6A修饰进行调节。首先,通过使用比色法检测整体RNA修饰水平,作者发现与亲本细胞系或CDX-S样品相比,舒尼替尼耐药细胞系和CDX-R样品中的m6A水平相应显著上调(图5.A-C)。此外,MeRIP-qPCR测定显示,与野生型细胞相比,在舒尼替尼耐药细胞中,TRAF1 mRNA中的m6A水平上调(图5.D-E)。为了进一步证实假设,作者测量了RCC细胞系中m6A RNA修饰相关酶,发现METTL14在舒尼替尼耐药细胞系中显著上调(图5.F)。为了进一步表征METTL14的表达,作者随后检测了其在CDX模型和临床患者样本中的表达,结果表明舒尼替尼耐药组织中METTL14表达显着增加(图 5.G-H)。此外,在RNA和蛋白质水平上,METTL14和TRAF1表达之间存在正相关关系(图5.I-K)。我们之前的m6A测序数据显示,在METTL14敲低细胞系中,TRAF1 mRNA转录本中的m6A水平随着TRAF1的表达而降低(图5J)。同时,m6A MeRIP-seq数据显示,在METTL14敲降细胞系中,TRAF1 mRNA转录本中的m6A水平随着TRAF1的表达而降低(图5.J)。与此结果一致,MeRIP-qPCR测定证实,当METTL14沉默或过表达时,TRAF1中的m6A水平相应降低或增加(图5.M-N)。综上所述,METTL14介导TRAF1 mRNA的m6A甲基化,正向调节舒尼替尼耐药RCC细胞中的TRAF1表达。
图5. TRAF1受m6A RNA甲基化调节
图5. TRAF1受m6A RNA甲基化调节

05  METTL14依赖m6A-IGF2BP2调节TRAF1的mRNA稳定性
越来越多的证据表明,mRNA转录本上的m6A峰可以影响mRNA的稳定性。作者发现,与78S细胞相比,78R细胞中TRAF1转录本的半衰期增加(图6.A)。为了探讨METTL14是否通过调节其mRNA稳定性来调节TRAF1表达,作者用转录抑制剂fang线菌素D(Act D)处理细胞,以测量调节METTL14表达时TRAF1转录本的半衰期。结果显示,METTL14的过表达导致TRAF1转录本的半衰期显著增加(图6.B),而METTL14的敲降导致TRAF1转录本的半衰期显著降低(图6.C)。为了进一步验证METTL14对TRAF1的调控取决于其mRNA转录本的甲基化这一假设,作者构建了具有TRAF1的3'UTR序列和相应突变体(Mut-3'UTR)序列的荧光素酶报告质粒(图6.D)。双荧光素酶实验结果表明,WT(但未发生突变)METTL14显著增强了TRAF1 3'UTR报告基因的表达(图6.E)。此外,野生型METTL14和突变的METTL14都不能影响mut-3'UTR的荧光素酶活性,这表明了RNA稳定性的m6A依赖性调节(图6.E-F)。
 
为了鉴定参与TRAF1调控的reader蛋白,作者设计了靶向已报道的可增强RNA稳定性的reader的小干扰RNA,结果显示IGF2BP2显著影响了TRAF1的表达(图6.G)。此外,RIP-qPCR显示IGF2BP2和TRAF1 mRNA之间的直接相互作用(图6.H)。同时,IGF2BP2和TRAF1转录本之间的直接相互作用在舒尼替尼耐药细胞系中更强(图6.I),而在调节METTL14表达后,此相互作用显著受到影响(图6.J-K)。TRAF1 mRNA稳定性在抑制IGF2BP2的细胞中受损(图 6.L)。总之,这些发现表明METTL14介导的m6A修饰以IGF2BP2依赖性方式增强TRAF1 mRNA稳定性。
图6. METTL14 调节 TRAF1 的 mRNA 稳定性
图6. METTL14 调节 TRAF1 的 mRNA 稳定性

06  TRAF1依赖METTL14维持舒尼替尼耐药性
基于上述结果,作者假设TRAF1是METTL14在舒尼替尼耐药中的功能靶标。为了验证这一假设,作者进行了一系列挽救(rescue)实验。CCK-8(图7.A-B),菌落形成(图7.C-D)和管的形成(图7.E-F)测定结果显示,METTL14过表达的78R细胞对细胞凋亡和血管生成有显著抑制作用,而TRAF1的敲降降低了METTL14过表达对细胞凋亡和血管生成的增强效应。此外,在METTL14敲降细胞中观察到细胞凋亡和血管生成的显着增强,而TRAF1的过表达恢复了METTL14敲降产生的的抗凋亡和血管生成效应。Western Blot分析进一步证实,TRAF1通过以METTL14依赖性方式,调节凋亡和血管生成途径来促进舒尼替尼耐药性(图7.G-H)。
图7.TRAF1依赖METTL14维持舒尼替尼耐药性
图7.TRAF1依赖METTL14维持舒尼替尼耐药性

07  在体内靶向TRAF1抑制RCC中的舒尼替尼耐药性
为了进一步证明体外研究结果并探索其潜在的临床价值,作者采用了体内舒尼替尼耐药模型(图8.A)。在耐舒尼替尼的CDX小鼠的皮下植入部位周围局部注射sh-TRAF1的AAV可以显著恢复RCC细胞对舒尼替尼治疗的敏感性。相比之下,在CDX-S模型中,局部注射OE-TRAF1的AAV促进了舒尼替尼耐药性(图8.B-D)。与体外结果一致,IHC染色显示Ki67,CD31和CD105在sh-TRAF1处理的小鼠中的表达降低,表明sh-TRAF1处理的小鼠的抗凋亡和血管生成能力降低(图8.E)。此外,TRAF1高表达有助于在舒尼替尼耐药细胞中激活下游抗凋亡和血管生成途径(图8.F)。在不久的将来,靶向TRAF1可能是舒尼替尼治疗患者的一种新型药物干预。
图8. 体内靶向TRAF1延缓舒尼替尼
图8. 体内靶向TRAF1延缓舒尼替尼
小  结
本文章利用RNA-seq发现TRAF1在舒尼替尼耐药细胞、CDX-R模型和临床患者中的表达显著增加。而TRAF1水平升高对于通过激活抗凋亡和血管生成途径维持舒尼替尼耐药性至关重要。耐舒尼替尼RCC中TRAF1水平的增加是由于其mRNA稳定性的增加,m6A MeRIP-seqMeRIP-qPCR显示这是由TRAF1中m6A修饰介导的。此外,作者证实了METTL14依赖m6A-IGF2BP2调节TRAF1的mRNA稳定性,进而调节凋亡和血管生成途径来促进舒尼替尼耐药性。该研究结果提供了舒尼替尼耐药的新机制,并表明靶向TRAF1及其途径可能是舒尼替尼治疗患者的一种新型药物干预。
 
云序生物m6A修饰研究五大模块
01 m6A RNA修饰测序
m6A RNA修饰测序(m6A-meRIP-seq)
对m6A RNA甲基化,目前zui流行的检测手段为m6A-MeRIP-Seq技术,适用于m6A RNA甲基化谱研究,快速筛选m6A RNA甲基化靶基因。云序可提供mRNA和多种非编码RNA的m6A测序:
  • m6A 全转录组测序(涵盖mRNA,LncRNA,circRNA)
  • m6A  LncRNA测序(涵盖LncRNA和mRNA)
  • m6A  Pri-miRNA测序(涵盖Pri-miRNA和mRNA)
  • m6A  mRNA测序
  • m6A  miRNA测序
02 检测整体m6A RNA修饰水平
LC-MS/MS检测整体RNA修饰水平
精准高效,可以实现一次检测,9类修饰水平检测,一步到位。
比色法检测整体RNA修饰水平
快速检测m6A整体甲基化水平
03 m6A RNA修饰上游酶的筛选
m6A RNA修饰相关酶PCR芯片
寻找上游直接调控m6A RNA甲基化的甲基转移酶。
04 m6A RNA修饰靶基因验证

MeRIP-qPCR/GenSeq® MeRIP试剂盒

云序提供各类不同修饰的meRIP-qPCR服务以及销售GenSeq® MeRIP试剂盒,可针对mRNA,lncRNA,环状RNA等不同类型的RNA分子进行检测,低通量验证RNA修饰靶基因表达水平。
05 机制互作研究

5.1 RIP-seq/qPCR/GenSeq® RIP试剂盒筛选或验证RNA修饰直接靶点,研究RNA修饰靶基因的调控机制。5.2 RNA pull down -MS/WB筛选或验证目标RNA互作基因或蛋白,研究相应的分子调控机制。5.3 双荧光素酶实验验证两基因互作,研究相应的分子调控机制。5.4 ChIP-seq筛选或验证目标蛋白与DNA互作,研究相应的分子调控机制。
--  云序生物服务优势  --
优势一:发表10分以上文章最多的m6A RNA甲基化测序服务平台。云序已累计支持客户发表70+篇高水平文章,合计影响因子570+,是国内支持发文最多、累计影响因子最高的公司。
优势二:至今完成4000+例 m6A测序样本,全面覆盖医口、农口等各类样本。
优势三:全面检测mRNA和各类非编码RNA(circRNA,lncRNA,Pri-miRNA等)。
优势四:du家提供m6A一站式服务:m6A整体水平检测m6A测序、MeRIP-qPCR验证、RIPRNA pull-down等。
优势五:率先研发微量MeRIP测序,RNA量低至500ng起。
优势六:国内最全的RNA修饰测序平台,提供m6A、m5C、m1A、m7G、m3C、O8G、ac4C乙酰化和2'-O-甲基化测序。目前云序在m6A、m5C、m1A、m7G、2’-O修饰、ac4c乙酰化均发表高质量文章,是国内RNA修饰类型研究最全,也最具实力的公司。

 
云序客户RNA修饰部分文章列表
文章列表.png

相关产品
m6A RNA甲基化测序
m5C RNA甲基化测序
m1A RNA甲基化测序
m7G RNA甲基化测序
ac4C RNA乙酰化测序
O8G RNA氧化修饰测序
2’-O-RNA甲基化测序
m6Am RNA甲基化测序
RNA pulldown
RNA-seq
RIP

往期回顾

1区,IF=27| 云序m6A MeRIP-seq助力鳞状细胞癌机制研究!

时间不够?云序m6A甲基化测序技术助力用户3-5个月发表5分文章!

超详细图文版:如何实现m6A测序数据可视化?

云序生物 | 2021年客户m6A项目文章汇总

9-12月m6Azui新高分文章汇总

1区 IF: 21|云序MeRIP-Seq & RIP-Seq助力肺动脉高压中m6A阅读蛋白YTHDF1

机制研究

云序生物zui新“RNA”甲基化研究汇总——m6A修饰之植物篇

云序项目文章纯测序发表7分杂志|西北农林猪精子m6A修饰文章

项目文章|赫捷院士团队揭密肺腺癌 m6A 机制再次登上Nature 子刊!

项目文章|赫捷院士团队nature子刊揭示METTL3以m6A依赖方式调控食管鳞癌

农口方向3个月内搞定5分文章秘籍——m6A热点错不了

m6A项目文章|ALKBH5通过调控WNT5A稳定性促进缺血后血管生成

3-5月 m6A RNA甲基化影响因子10+文章集锦

云序客户再发15分文章:FBW7靶向m6A结合蛋白YTHDF2抑制卵巢癌

Science新发现 |RNA以m6A依赖方式调节染色质状态和基因转录

m6A 10分+文章思路干货视频

Nat Commun | 云序客户揭示Mettl3协调癌症的生长和转移的分子机制

项目文章|m6A甲基化修饰对神经退行性疾病的重大发现

云序客户余健秀课题组m6A方向再次取得重大发现——SUMO化促进YTHDF2结合m6A修饰的mRNA影响癌症进展

一次RNA甲基化测序,多项成果|云序测序带您超高性价比体验

2020年整年度RNA甲基化文献汇总

9-11月 m6A RNA甲基化影响因子10+文章集锦

项目文章|Nature子刊m6A修饰携手miRNA揭示脱氧胆酸在胆囊癌中作用机制

云序超微量MeRIP测序技术助力用户m6A甲基化文章连续发表

m1A多篇齐发:除了m6A,还有哪些热门RNA修饰?

云序客户zui新成果揭秘:三个月内搞定5分m6A甲基化谱文章?

8月m6A RNA甲基化影响因子10+文章集锦

20分Nature子刊|揭秘神经发育过程中m6A RNA甲基化与组蛋白修饰间的关系

去甲基化酶ALKBH5在胰腺癌中的作用荣登15分杂志

国自然热点—m6A等热门RNA修饰研究技术漫谈